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scaling techniques and the implicit function theorem. This 4%~givesa summary of these results for the case of bifurcation near an
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The results have applications to the buckling theory of plate~ and
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ACCOMPANYING STATEMENT

• TOPICS IN LOCAL BIFURCATION THEORY

by

Jack K. Hale

- 

• 

• This paper suma rizes much of our work over the last

few years on bifurcation in familie, of functions which contain

- 
• several independent parameters. Applications arise in almost

every discipline. We hav, emphasized problem. of buckling in -

plates and shells and have discussed the effect of lateral -•

forces , imperfections , curvature ai:;d variations in the shape.

Applications have also been mad. to nonlinear oscillations in

ordinary differential equation. - the parameters being damping,

amplitude and frequency of forcing.
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TOPICS IN LOCAL BIFURCATION THEORY

.1 by

Jack K. Hale

Abstract

Suppose A,X,Z are Banach spaces, M:A x X -‘ Z is a

mapping continuous together with derivatives up through some

order r. A bifurcation surface for the equation (1)

M(A ,x) = 0 is a surface in parameter space A for which

the number of solutions x of (1) changes as A crosses

— this surface. Under certain generic hypotheses on M, the

author and his colleagues have shown that one can systematic-

ally determine the bifurcation surfaces by elementary scaling

techniques and the implicit function theorem. This talk gives

a summary of these results for the case of bifurcation near

an isolated solution or families of solutions of the equation

M(A0,x) — 0. The results have applications to the buckling

theory of plates and shells under the effect of external forces,

imperfections, curvature and variations in shape. The results

on bifurcation near families has applications in nonlinear

oscillations and the theory of homoclinic orbits.
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TOPICS IN LOCAL BIFURCATION THEORY

El by

Jack K. Hale -

- 

-
~ Suppose A ,X,Z are Banach spaces, N: A x x + Z is a

smooth function of (A,x) E A x X and consider the equation

M(A,x ) = 0 (1)

for A € A, x € X. A pair (A,x) satisfying (1) is called

a solution, the set of solutions is denoted by S and

SA = {XEX: (A ,x) E S}

is the section of solution set at A. The - basic problem in

bifurcation theory is to determine how the set S~ varies with

the parameter A. Any point A for which the structure of the

set S
~ 

changes is called a bifurcation point.

If A is a scalar parameter, very general results on the

existence of bifurcation points can be obtained without impos-

ing too many specific properties about the manner in which the

function N depends on (A,x). On the other hand, if A i.

a vector parame ter , one general ly must assume more complete

knowledge is available.
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- 

In the past few years, I and some of my colleagues have

been attacking this latter problem under the following premises.

Firstly, we assume the parameter is a vector parameter of

dimension generally greater than one. On the other hand, we

do not take the dimension too large because we wish to discuss

the interaction of a few physical parameters at a time. It is

well known that many parameters are needed to discuss a corn-

plicated bifurcation point. However, it is also known that

some parameters have a more drastic effect on the qualitative

nature of the bifurcation than others. It is, therefore, of

interest to understand well the bifurcations in low dimensional

parameter space A.

Secondly, we wish to devise methods which are applicable -

to equations which may not be the gradient of some function.

Such methods will be applicable tc nonconservative physical

H systems.

Thirdly, we want the methods to be extremely elementary

and require only calculus, the implicit function theorem and a

small amount of geometric intuition.

The purpose of this talk was to survey some of our

efforts in this direction. Three types of problems were die—

cussed. First, suppose the equation

M(A0,x) = 0 (2)

- 

r
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for a particular value of A0 has the isolated solution

• x = 0 and the linear operator A = ~M(A 0,0)/~x does not

have a bounded inverse. Assuming dim N (A) is one or two

and assuming some generic conditions on the nonlinearities,

one can give a complete description of the bifurcation set

near the point (A010) E A x x. We give the theory and

applications especial ly to the von K~ rmán equations in the

papers [1,2,3). External forces, imperfections, small curva-

tures and variations in shape are considered. The effect of

symmetry is contained in [4,5]. Bifurcation of the nodal lines

of a rectangular plate is contained in [6]-. Paper [7] contains

:~ ! general lecture notes on bifurcation.

The second problem discussed concerns the case in which

the equation (2) has a compact family of solutions. More speci-

fically, suppose there is a C2 function p(t) = p(t+l), t E I R ,

such that

M(A01p(t)) = 0, t € R, (3)

and , for each t E ~~~, the operator A(t) = 3M(A0,p(t) )/ax

does not have a bounded inverse. One is interested in the bi-

furcation of solutions near the “circle” r = {p(t), 0 < t < l}

C N for A near A0. The complete structure of the bifurca—

tion is given in [8,91 with applications to nonlinear oscilla—

tions under the assumption that dim N(A(t)) = 1 for all. t.



Implications in classical perturbation theory are also given.

The case where dim N (A(t)) = 2 is discussed in (10).

The third problem concerns bifurcation from a noncompact

family of solutions of (3). This can arise in several dif-

ferent ways in the applications. If the function M has the

form

M(X ,x) = Ax + N(A ,x)

N(0,x) = 0 for all x €

~~ 
~ this is the classical problem of a small perturbation of a

— linear operator. If dim N (A) > 1, then for A = 0 the

equation (3) has a linear subspace of solutions; that is, a

noncompact set of solutions-. These problems are not well

understood and are extremely difficult. In (11], we give a

complete description of the bifurcation sets for the classical

Duff ing equation with or without damping with all parameters

being treated as independent.

Another way in which a noncompact family can arise is

, 
-
~ when there is a family of solutions p(t), t e IR, of Equation

(3) with the set r = {p(t), t E u~} C X bounded but not com-

pact. For example, in a second order autonomous ordinary

differential equation, r could be an orbit whose a- and w-

limit sets are the same critical point. When this system is

subjected to a small periodic forcing, it has been known for a

I -
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long time that homoclinic points may occur near r. This

problem is discussed in more detail in [12] when the equation

is subjected to both damping and forcing which is not necessarily

periodic.
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